

CONTINENTAL HYDRAULICS

MOTION CONTROL SOLUTIONS

CEM Modules | Software | Tools | Accessories

MOTION CONTROL SOLUTIONS

CONTINENTAL HYDRAULICS MOTION CONTROL SOLUTIONS

TABLE OF CONTENTS

CEM-AC	Single Channel Power Amplifier	page 3
CEM-AA	Dual Channel Power Amplifier	page 5
CEM-RA	Dual Channel Ramp Amplifier. Suitch inputs for ramped motion profile control	page 7
CEM-PA	Closed Loop Pressure Amplifier	page 9
CEM-SA	Closed Loop Position Module	page 11
CEM-SD	Closed Loop Position Module	page 13
CEM-MS	Closed Loop Synchronization Module	page 15
CEM-PID	Closed Loop PID Module	page 17
VEA	Valve Electrical Accessories	page 19

HVDRAUL

DIN Coil Mount

DESCRIPTION:

This power amplifier mounts directly to a single solenoid proportional valve coil with a DIN style connector, and will drive up to 2.5A. It is suitable to control current to either a proportional flow or pressure valve coil.

A wide range of analog signals are accepted. There are two product choices for input; one accepts voltage commands, the other accepts current commands. These inputs are easily scaled to match system requirements. Two independent ramps are available for acceleration and deceleration control.

Min and Max output current are adjustable. Output characteristics can be independently customized. The module is disabled if the coil outputs are shorted or open. If command current is outside of the proper range, the module is also disabled. PWM and Dither are user adjustable.

This module is easily adapted to a variety of system requirements. All variables are user adjusted with easy to use software on your Microsoft Windows[®] laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

TECHNICAL DATA

Power Supply		vDC	12 to 30 (including ripple)
	Consumption	mA	<100mA + solenoid
	External Fuse	Α	3 (medium action)
Analog Input	Voltage	vDC	0 to +10 (voltage version)
	Impendance	ohm	90k
	Current	mA	4 to 20 (current version)
	Impendance	ohm	390
	Resolution	%	<0.1
	Sample Time	mS	1.0
Solenoid Outp	ut	Α	1.2 Cottwara Calastable
		Α	2.5 Soltware Selectable
P	WM Frequency	Hz	60 to 2650
Di	ther Frequency	Hz	60 to 400
C	Dither Amplitute	%	0 to 30
	Sample Time	mS	0.17

Electrical Cor	nection Power and Signal Communication Ground		M12 5 pin male key style A LIN bus via DIN coil pin
Housing	Housing		Attaches to DIN 43650 coil
	Material		Polyamide PA
Con	nbustability Class	UL94	V1
	Protection Class	IP	65 (with gasket)
Work	king Temperature	С	-20 to +60
Stor	age Temperature	С	-20 to +70
	Humidity	%	95 (non condensing)
Electro Magnetic	Compatibility		
	Emission		EN 61000-6-2
	Immunity		EN 61000-6-3
Vib	ration Resistance		EIC 60068-2-6

SINGLE CHANNEL POWER AMPLIFIER - CEM-AC

E0 voltage input command

E1 current input command

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

CONTINENTAL HYDRAULICS DUAL CHANNEL POWER AMPLIFIER CEM-AA

Wide Range of Analog Input Signals

DESCRIPTION:

This power amplifier drives either single or dual solenoid proportional valve coils up to 2.6A. It is suitable to control current to proportional directional, flow or pressure valve coils.

A wide range of analog signals are accepted. User may select either voltage or current input mode. These inputs are easily scaled to match system requirements. Four ramps are available for independently setting acceleration and deceleration in each direction.

Min and Max output current are adjustable. Output characteristics can be independently customized. The module is disabled if the coil outputs are shorted or open. If command current signal is outside of the proper range, the module is disabled. PWM and Dither are user adjustable.

This module is easily adapted to a variety of system requirements. All variables are user adjusted with easy to use software on your Microsoft Windows[®] laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

Power Supply		12 to 30 (including ripple)		Solenoid Outputs	A	1.0
Consumption	mA	<100mA + solenoid		•	A	1.6 Software Selectable
External Fuse	A	3 (medium action)			A	2.6
Analog Inputs Voltage	vDC	0 to +/- 10		PWM Frequency	Hz	100 to 2650
Impendance	ohm	90k		Dither Frequency	Hz	60 to 400
Current	mA	0 to +/- 20 (typ 4 to 20)		Dither Amplitute	%	0 to 30
Impendance	ohm	390		Sample Time	mS	0.17
Resolution	%	<0.1		Housing Module		Snaps to 35mm DIN Rail EN 50022
Sample Time	mS	1.0		Material		Polyamide PA 6.6
Reference Voltage	V	8 (10mA max)		Combustability Class	UL94	VO
Digital Inputs	V	Logical 0 = < 2		Protection Class	IP	20
5	v	Logical 1 = > 10		Working Temperature	С	-20 to +60
Impendance	ohm	25k		Storage Temperature	С	-20 to +70
Digital Outputs	V	Logical 0 = < 2 (50mA max)	1	Humidity	%	95 (non condensing)
3	V	Logical 1 = ~ Power Supply		Electro Magnetic Compatibility		
Electrical Connection			1	Emission		EN 61000-6-2
Programming Port		RS-232 3.5mm Stero Jack		Immunity		EN 61000-6-3
Power and Signal		4 strips with 4 screw terminals each		Vibration Resistance		EIC 60068-2-6
Ground		via DIN Rail				

TECHNICAL DATA

CEM-AA-A

- Dual Channel Power Amplifier

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

Switch Inputs for Ramped Motion Profile **DESCRIPTION:**

This ramp amplifier drives either single or dual solenoid proportional valve coils up to 2.6A. It is suitable to control current to either proportional directional, flow, or pressure valve coils. This module accepts 4 independent switch inputs, each of which has independently adjustable speed and ramp controls. Inputs are additive for up to 15 unique preset speed and ramp profiles.

In addition to the switch inputs, an analog input is also available. A wide range of analog signals are accepted. This input is easily scaled to match system requirements. Analog command can be used in addition to, or independent from, switch input speeds.

Min and Max outputs are adjustable. Output characteristics can be independently customized. The module is disabled if the coil outputs are shorted or open. PWM and Dither are user adjustable.

This module is easily adapted to a variety of system requirements. All variables are user-adjusted with easy to use software on your Microsoft Windows® laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

		VDC	12 to 30 (including ripple)
	Consumption	mA	<100mA + solenoid
	External Fuse	A	3 (medium action)
Analog Inputs	Voltage	vDC	0 to +/- 10
	Impendance	ohm	90k
	Resolution	%	0.024
	Sample Time	mS	1.0
Refe	erence Voltage	v	10 (10mA max)
Digital Inputs		V	Logical 0 = < 2
J p		v	Logical 1 = > 10
	Impendance	ohm	25k
Digital Outputs		۷	Logical 0 = < 2 (50mA max)
5 1		V	Logical 1 = ~ Power Supply
Electrical Conn	ection		
Pro	gramming Port		RS-232 3.5mm Stero Jack
Po	wer and Signal		8 strips with 4 screw terminals each
	Ground		via DIN Rail

Solenoid	Outputs	Α	1.0					
		Α	1.6 — Software Selectable					
		Α	2.6					
	PWM Frequency	Hz	100 to 2650					
	Dither Frequency	Hz	60 to 400					
	Dither Amplitute	%	0 to 30					
	Sample Time	mS	0.17					
Housing	Module		Snaps to 35mm DIN Rail EN 50022					
•	Material		Polyamide PA 6.6					
	Combustability Class	UL94	VO					
	Protection Class	IP	20					
	Working Temperature	С	-20 to +60					
	Storage Temperature	С	-20 to +70					
	Humidity	%	95 (non condensing)					
Electro Mag	netic Compatibility							
	Emission		EN 61000-6-2					
	Immunity		EN 61000-6-3					
	Vibration Resistance		EIC 60068-2-6					

TECHNICAL DATA

7

CEM-RA-A

Dual Channel Ramp Amplifier

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

CLOSED LOOP PRESSURE AMPLIFIER - CEM-PA

Single Channel with PID Signal Conditioning.

DESCRIPTION:

This closed loop PID amplifier drives a single solenoid proportional pressure or flow control valve coil up to 2.6A. It is suitable to provide precise closed loop control in pressure, force, or velocity systems. This module uses traditional PID error correction to provide stable control in dynamic systems.

A wide range of analog signals are accepted. User may select either voltage or current input mode. These inputs are easily scaled to match system requirements. Input command can be ramped. PID variables are adjustable over a wide range. The amplifier is easily switched from open loop to closed loop control.

Min and Max output current are adjustable. Output characteristics can be independently customized. The module is disabled if the coil outputs are shorted or open. If command current signal is outside of the proper range, the module is disabled. PWM and Dither are user adjustable.

This module is easily adapted to a variety of system requirements. All variables are user adjusted with easy to use software on your Microsoft Windows® laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

		VDC	12 to 30 (including ripple)	1	Salanaid	Jutputo	Δ	1.0	1
Fower Suppry	Consumption	mA	<100mA L solonoid			Julpuis	Δ	1.6	Software Selectable
	External Fuse	A	3 (medium action)				Â	26	
Analog Inputo	Voltago	VDC	0 to 110	1		PWM Frequency	Hz	100 to 26	550
Analog inputs	Impendance	ohm	90k			Dither Frequency	Hz	60 to 400)
	Current	mA	4 to 20			Dither Amplitute	%	0 to 30	
	Impendance	ohm	390			Sample Time	mS	0.17	
	Resolution	%	<0.1		Housing	Module		Snaps to	35mm DIN Rail EN 50022
Sample Time		mS	1.0			Material		Polyamic	de PA 6.6
Reference Voltage		v	8 (10mA max)			Combustability Class	UL94	VO	
Digital Inputs		V	Logical 0 = < 2	1		Protection Class	IP	20	
- igna inpato		v	Logical $1 = > 10$		v	Vorking Temperature	С	-20 to +6	0
	Impendance	ohm	25k		:	Storage Temperature	С	-20 to +7	0
Digital Outputs		V	Logical $0 = < 2$ (50mA max)	1		Humidity	%	95 (non d	condensing)
			Logical 1 = ~ Power Supply		Electro Magne	etic Compatibility			
Electrical Connection				1		Emission		EN 6100	0-6-2
Prog	ramming Port		RS-232 3.5mm Stero Jack			Immunity		EN 6100	0-6-3
Power and Signal			4 strips with 4 screw terminals each			Vibration Resistance		EIC 6006	68-2-6
	Ground		via DIN Rail						

TECHNICAL DATA

CLOSED LOOP CONTROL OF PRESSURE, FORCE OR SPEED.

9

CEM-PA-A

Closed Loop Pressure Amplifier

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

Analog Command and Feedback

DESCRIPTION:

This closed loop position module is designed to quickly and accurately move hydraulic cylinder loads. Position and velocity commands are from analog sources. Cylinder position feedback is from an analog source.

Stroke dependent deceleration is used to provide quick and repeatable positioning. Internal ramp and velocity adjustments allow for easy system tuning.

A wide range of analog signals are accepted. User may select either voltage or current input mode. These inputs are easily scaled to match system requirements.

Forward and Reverse "jog" inputs allow for manual load control. A user definable window for "in position" triggers an output for communication to the next machine function.

Output is an analog voltage, 0 to +10vdc, suitable for directly driving a proportional directional valve with on board electronics.

This module is easily adapted to a variety of system requirements. All variables are user adjusted with easy to use software on your Microsoft Windows laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

Power Supply		12 to 30 (including ripple)		Digital Inputs		V	Logical 0 = < 2
Consum	ption mA	<100mA				V	Logical 1 = > 10
External	Fuse A	3 (medium action)			Impendance	ohm	25k
Analog Inputs Vo	tage vDC	0 to + 10		Analog Output	Voltage	vDC	0 to +/- 10
Impend	ance ohm	33k			Current	mA	5 (max)
Cu	rrent mA	0 to 20 (typ 4 to 20)			Resolution	%	0.024
Impenda	ance ohm	250		Housing	Module		Snaps to 35mm DIN Rail EN 50022
Resolu	ution %	0.01			Material		Polyamide PA 6.6
Sample -	Fime mS	1.0		Combustability Class		UL94	VO
(Speed Input) Volt	age vDC	0 to +10		Protection Class		IP	20
(Speed Input) Impenda	nce ohm	90k		Working	Temperature	С	-20 to +60
Digital Outputs	V	Logical 0 = < 2 (50mA max)	1	Storage Temperature		С	-20 to +70
9	V	Logical 1 = ~ Power Supply			Humidity	%	95 (non condensing)
Electrical Connection			1	Electro Magnetic Co	mpatibility		
Programming	Port	RS-232 3.5mm Stero Jack	Emission			EN 61000-6-2	
Power and Si	gnal	4 strips with 4 screw terminals each			Immunity		EN 61000-6-3
Gr	ound	via DIN Rail		Vibrati	on Resistance		EIC 60068-2-6

TECHNICAL DATA

Closed Loop Position Module

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

CLOSED LOOP POSITION MODULE - CEM-SD

Analog Command and SSI Digital Feeback

DESCRIPTION:

This closed loop position module is designed to quickly and accurately move hydraulic cylinder loads. Position and velocity commands are from analog sources. Cylinder position feedback is from a digital (SSI) source.

Stroke dependent deceleration is used to provide quick and repeatable positioning. Internal ramp and velocity adjustments allow for easy system tuning.

A wide range of analog signals are accepted. User may select either voltage or current input mode. These inputs are easily scaled to match system requirements.

Forward and Reverse "jog" inputs allow for manual load control. A user definable window for "in position" triggers an output for communication to the next machine function.

Output is an analog voltage, 0 to +10vdc, suitable for directly driving a proportional directional valve with on board electronics.

This module is easily adapted to a variety of system requirements. All variables are user adjusted with easy to use software on your Microsoft Windows[®] laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

Power Supply		vDC	12 to 30 (including ripple)	1	Digital Inputs		V	Logical 0 = < 2
	Consumption	mA	<100mA		Digital inputo		v	Logical 1 = > 10
	External Fuse	A	3 (medium action)			Impendance	ohm	25k
Analog Inputs	Voltage	vDC	0 to + 10		Digital Outputs		V	Logical $0 = < 2$ (50mA max)
	Impendance	ohm	33k		5		V	Logical 1 = ~ Power Supply
	Current	mA	0 to 20 (typ 4 to 20)		Analog Output	Voltage	VDC	0 to +/- 10
	Impendance	ohm	250		5 1	Current	mA	5 (max)
	Resolution	%	0.01			Resolution	%	0.024
	Sample Time	mS	1.0		Housing Module			Snaps to 35mm DIN Rail EN 50022
(Speed	Input) Voltage	vDC	0 to +10		Ŭ	Material		Polyamide PA 6.6
(Speed Input	t) Impendance	ohm	90k		Combus	stability Class	UL94	VO
SSI Feedback			RS-422 150k baud		Pro	otection Class	IP	20
	Monitor	vDC	0 to 10		Working	Temperature	С	-20 to +60
		mA	5 (max)		Storage	Temperature	С	-20 to +70
Electrical Conne	ection					Humidity	%	95 (non condensing)
Pro	gramming Port		RS-232 3.5mm Stero Jack		Electro Magnetic Compatibility			
Po	wer and Signal		8 strips with 4 screw terminals each		Emission			EN 61000-6-2
	Ground		via DIN Rail		Immunity			EN 61000-6-3
					Vibratic	on Resistance		EIC 60068-2-6

TECHNICAL DATA

Closed Loop Position Module

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

CONTINENTAL HYDRAULICS CLOSED LOOP SYNCHRONIZATION MODULE CEM-MS

Two Axis Control

DESCRIPTION:

This closed loop position module is to be applied in pairs, each module driving a hydraulic cylinder for a system of synchronized motion. This pair of cylinders can quickly and accurately move hydraulic cylinder loads in unison. Position and velocity commands are from analog sources. Cylinder feedback is from an analog source.

Stroke dependent deceleration is used to provide quick and repeatable positioning. Internal ramp and velocity adjustments allow for easy system tuning.

A wide range of analog signals are accepted. User may select either voltage or current input mode. These inputs are easily scaled to match system requirements.

Output is an analog voltage, 0 to +10vdc, suitable for directly driving a proportional directional valve with on board electronics.

This module is easily adapted to a variety of system requirements. All variables are user adjusted with easy to use software on your Microsoft Windows[®] laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

Power Supply		vDC	12 to 30 (including ripple)	Digital Inputs	Digital Inputs		Logical 0 = < 2
	Consumption	mA	<100mA			V	Logical 1 = > 10
	External Fuse	A	3 (medium action)		Impendance	ohm	25k
Analog Inputs	Voltage	vDC	0 to +10	Analog Output	Voltage	vDC	0 to +/- 10
· · · · · · · · · · · · · · · · · · ·	Impendance	ohm	33k		Current	mA	5 (max)
	Current	mA	0 to 20 (typ 4 to 20)		Resolution	%	0.024
	Impendance	ohm	250	Housing	Module		Snaps to 35mm DIN Rail EN 50022
	Resolution	%	0.01	U U	Material		Polyamide PA 6.6
	Sample Time	mS	1.0	Combu	Combustability Class		VO
(Speed	Input) Voltage	vDC	0 to +10	Pr	Protection Class		20
(Speed Input) Impendance	ohm	90k	Working	Working Temperature		-20 to +60
Digital Outputs		V	Logical 0 = < 2 (50mA max)	Storage Temperature		С	-20 to +70
- ignal e aipais		V	Logical 1 = ~ Power Supply		Humidity	%	95 (non condensing)
Electrical Conne	ection			Electro Magnetic Cor	npatibility		
Programming Port			RS-232 3.5mm Stero Jack		Emission		EN 61000-6-2
Power and Signal			4 strips with 4 screw terminals each		Immunity		EN 61000-6-3
	Ground		via DIN Rail	Vibrati	on Resistance		EIC 60068-2-6

Closed Loop Synchronization Module

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

CONTINENTAL HYDRAULICS CLOSED LOOP PID MODULE CEM-PID

Universal PID Signal Conditioner DESCRIPTION:

This closed loop PID module compares command and feedback signals, and applies traditional PID gain settings to the error signal. This modified signal is provided as an analog voltage (0 to +/-10v)output. It may be used to drive proportional pressure or flow control valves with on board electronics, or as a command to another amplifier module. It is suitable to provide dynamic closed loop control in pressure, force, or velocity systems.

A wide range of analog signals are accepted. User may select either voltage or current input mode. These inputs are easily scaled to match system requirements. Input command can be ramped. PID variables are adjustable over a wide range. Easily switched from open loop to closed loop control.

Output can be scaled to match the proportional valve being driven. If command current signal is outside of the proper range, the module is disabled. Digital outputs inform the user of system errors.

This module is easily adapted to a variety of system requirements. All variables are user adjusted with easy to use software on your Microsoft Windows[®] laptop. Control variables are stored in non-volatile memory internal to the module. All variables can be read by the laptop, and reproduced exactly on other modules.

		-						
Power Supply		vDC	12 to 30 (including ripple)		Digital Inputs		V	Logical 0 = < 2
	Consumption	mA	<100mA				V	Logical 1 = > 10
	External Fuse	A	3 (medium action)			Impendance	ohm	25k
Analog Inputs	Voltage	vDC	0 to +10		Analog Output	Voltage	vDC	0 to +/- 10
1	Impendance	ohm	33k			Current	mA	5 (max)
	Current	mA	4 to 20			Resolution	%	0.024
	Impendance	ohm	250		Housing	Module		Snaps to 35mm DIN Rail EN 50022
	Resolution	%	0.012		Ŭ	Material		Polyamide PA 6.6
	Sample Time	mS	1.0		Combustability Class		UL94	VO
Ref	erence Voltage	v	8 (10mA max)		Protection Class		IP	20
Digital Outputs		V	Logical 0 = < 2 (50mA max)	1	Working Temperature		С	-20 to +60
		V	Logical 1 = ~ Power Supply		Storage Temperature		С	-20 to +70
Electrical Conn	ection			1		Humidity	%	95 (non condensing)
Pro	Programming Port		RS-232 3.5mm Stero Jack		Electro Magnetic Com	patibility		
Power and Signal			4 strips with 4 screw terminals each		Emission			EN 61000-6-2
	Ground		via DIN Rail			Immunity		EN 61000-6-3
					Vibratio	n Resistance		EIC 60068-2-6

TECHNICAL DATA

CEM-PID-A

- Closed Loop PID Module

FUNCTIONAL DIAGRAM

WIRING EXAMPLE

CONTINENTAL HYDRAULICS VALVE ELECTRICAL ACCESSORIES FOR ELECTRO HYDRAULIC PRODUCTS

DESCRIPTION:

These products are used to connect, configure and troubleshoot your electro hydraulic proportional products.

CHI electro hydraulic products are unique in the industry, as you need only "One cable, and One software" to configure our full line of all digital valves and control modules.

This easy to use software allows you precise and repeatable control of the electronic variables necessary to tune the motion profile of your control system.

All variables can be adjusted, saved and reproduced into other modules. Variable names and ranges are consistent from one module to another, making your machine tuning job easier.

Product offerings include:

Programming Cable	;
Adapters	
Software	

Programming Boxes Connectors and Cordsets

PROGRAMMING CABLE

VEA-USB is a cable necessary to configure all digital valves and CEM control modules. One end has a USB connector to plug into your Microsoft Windows[®] laptop. The other end has a 3.5mm plug that connects to the control module or valve electronics jack. This tool allows you to communicate with, configure and troubleshoot electronic controllers.

VALVE ELECTRICAL ACCESSORIES

PROGRAMMING BOX:

VEA-PB5 is a tool that eases the task of making adjustments to digital electronic controllers. This programming box can be used during the commissioning of a new product, or when troubleshooting an existing application.

To troubleshoot an existing application, simply disconnect the existing 5 pin connector, and insert this tool in series. You may now monitor the on board amplifier as being commanded by the machine controller. The VEA-PB5 allows you to connect your Microsoft Windows[®] laptop via the VEA-USB programming cable. You may then tune the variables to optimize you motion profile, and save those changes. Banana Jacks for power and signal are included, and allow for bench top programming.

VEA-PB5 will connect directly to CEM-AC coil mounted amplifiers. VEA-527 is required to connect to "J" and "G" pressure and flow valves with 7 pin connector on board electronics.

CONFIGURING A CEM-AC

CONFIGURING A VALVE WITH ON BOARD ELECTRONICS ON THE BENCH

VALVE ELECTRICAL ACCESSORIES

PROGRAMMING BOX:

VEA-PB7 is a tool that eases the task of making digital adjustments to your on board electronics equipped proportional valves. This programming box can be used during the commissioning of a new product, or troubleshooting an existing application.

To troubleshoot an existing application, simply disconnect the existing 7 pin connector, and insert this tool in series. You may now monitor the on board amplifier as being commanded by the machine controller. The VEA-PB7 allows you to connect your Microsoft Windows® laptop via VEA-USB, and change variables as required. Banana Jacks for power and signal are included, and allow for benchtop programming.

VEA-PB7 also includes controls and switches that allow for independent total control of the valve during troubleshooting.

VEA-PB7 will connect directly to any "J" and "G" valves with 7 pin connector on board electronics.

CONFIGURING A VALVE WITH ON BOARD ELECTRONICS

PROGRAMMING BOX CABLE ADAPTER

VEA-527 is an adapter that allows the VEA-PB5 to connect to proportional valves with on board electronics. It has a male M12 5 pin jack, and a female 7 pin plug to connect to the valve. Internally, Pin A is connected to Pin C to turn on "Enable". Power, signal and communication pins are wired straight through.

VALVE CONNECTORS AND CORDSETS

VEA-3P5C is a molded shielded cordset that brings power and signal to the CEM AC amplifier. It is a M12 female connector attached 5 conductors of 24ga finely stranded copper, all wrapped in a foil shield. The shield drain is to be connected to frame ground at the control box. The cable is 5 meters long, and can be easily cut to length during installation.

Electrical connectors and shielded cable assemblies connects the machine controller to the 7 pin on board electronics valve controller. Plastic **VEA-3P7P** and metal **VEA-3P7M** versions are offered.

VALVE ELECTRICAL ACCESSORIES

SOFTWARE

CHI PC is a "free to download" application for your Microsoft Windows[®] laptop. This tool allows you configure and troubleshoot all of your CHI digital electronics products. This easy to understand software can be used in all three process steps: configure and tune the machine, storing these variables to permanent memory, and monitoring the machine during operation.

Consistent	Parameter		ameter	Help	And Company			
5.				homele the or the control large	- Sere			
ENS.			- 08	sensor somitoring (ON (OFF),				
AW PR	1000	1000	0.7	WA command scaling, of the related analogue isput.	(Interior)			
IN WE	1000	1000	0.7	WI command scaling, of the calated analogue input.	Comments of			
AN X	1006	1000	6 V	2 motual legue scaling, of the related malogue input.	Lindens			
AUP			40	resplants for W input in an				
NW00.A			40	rangtines for # input in no	The second second ()			
THE SHELINE			-18000	regative iinstation of the control signal B	2-2			
FTEP			10.0	pt3-gain in 3,01 units, control parameter for the displacement contr				
PTITI			3	ti damping for gti-pain in 0.1 on units, control parameter for the d	1 84-6			
\$			100	p-pain in 0,09 mains, control parameter for the displacement control				
9			140	1-pain in 0,1 as write, molecul parameter for the displacement occur				
30			, b	d-pain in 0,1 we units, control parameter for the displacement contr				
211			3	tl damping for d-pain is 0,1 as write, control parameter for the dis				
MIRA			. 0	Seadinghit compensation A: values for valve adaptation in 0,010				
MINE			Ð	beadmand compensation Bj values for value adaptaton in 0,011				
MAKA			10000	Output limitation &; values for valve adaptaion in 0.014				
MAANE			10000	Dargus limitation by values for value adaptatics in 0,015				
TRIGGER			200	Activation point of 2354 values for value adaptaton in 0.015				
ÓL.				verpet polentity (+) -)				
URRENT			D	Selection of the rates purrant D= 14, 1+ 1,64 and D= 2,64				
AMPL			000	Bither amplitude to 0,014 of the seted success range,				
100			120	Bither frequency in #a				
WM			1929	FWE frequency in Ha				
41.0.104				Rufate of the suspect loss	2			

The configuration page allows the user to scale inputs, adjust ramp times, set closed loop control variables, and adjust outputs to match the valve. Only those parameters that apply to the connected module appear on this screen.

DOWNLOAD

The oscilloscope feature allows the user to monitor inputs and outputs in real time. Cursor control allows for precise measurement of variables.

ABOUT CONTINENTAL HYDRAULICS

Rugged, durable, high-performance, efficient—the reason Continental Hydraulics' products are used in some of the most challenging applications across the globe. With a commitment to quality customer support and innovative engineering, Continental's pumps, valves, power units, mobile and custom products deliver what the markets demand. Continental has been serving the food production, brick and block, wood products, automotive and machine tool industries since 1962. Learn how our products survive some of the most harsh environments.

SALES@CONTHYD.COM

5505 WEST 123RD STREET · SAVAGE, MN 55378-1299 / PH: 952.895.6400 / FAX: 952.895.6444 / WWW.CONTINENTALHYDRAULICS.COM